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In this paper we present a new closed-form solution to a chaotic difference equation, ynþ1 ¼ a2y2
n þ a1yn þ a0 with

coefficient a0 ¼ ða1 2 4Þða1 þ 2Þ=ð4a2Þ; and using this solution, show how corresponding exact roots to a special set
of related polynomials of order 2p, p2N with two independent parameters can be generated, for any p.
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INTRODUCTION

The difference equation ynþ1 ¼ f ð ynÞ; n ¼ 0; 1; 2. . . where

f ð yÞ ¼ a2y2 þ a1y þ
ða1 2 4Þða1 þ 2Þ

4a2

ð1Þ

and a1; a2 [ C; a2 – 0 has the exact, general solution

ynðvÞ ¼
1

a2

2 cos ðv2nÞ2
a1

2

� �
: ð2Þ

We discovered this solution from the solution presented in Ref. [5] by reparametrising with

two new variables as, for example, yn ¼ c cos ðv2nÞ þ d: We then inserted this into the

difference equation and equated powers of cos ðv2nÞ; obtaining that c ¼ 2=a2 and d ¼

2a1=2a2: We were also interested to notice that the fixed-point problem for Eq. (1) is also a

root-finding problem for the polynomial

f pð yÞ2 y ¼ 0 ð3Þ

The result known as Abel’s impossibility theorem states that there are no exact expressions

for finding the roots of general polynomials of order greater than four in terms of a finite

number of elementary operations. Therefore, in general, we would be forced to use an

iterative root-finding method for this polynomial (see, for example, Refs. [1,2]). These

methods are typically difference equations, for example, the method of Newton–Raphson
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iteration for solving the equation Fð yÞ ¼ 0 is, given a close guess y0:

ynþ1 ¼ yn 2
Fð ynÞ

F0ð ynÞ
ð4Þ

The main requirement of this method is convergence to some fixed point. However,

a problem sometimes arises in that the system (4) may well oscillate, or in some cases, behave

chaotically. Much progress has been made by numerical analysts in proving convergence and

inventing better methods that are stable even for bad initial guess values, see for example,

Ref. [3]. Some beautiful methods have been devised that combine numerics with topology.

They make it possible to find approximate solutions of a given system by a continuous

deformation of the solutions of a related one that is exactly solvable, guaranteeing global

convergence [4]. However, in this case, as in other special cases, we can find the roots of the

polynomial (3) exactly, without the need for iteration. The rest of the paper shows how to do

this explicitly.

PERIODIC ORBITS ARE ROOTS OF THE POLYNOMIAL

The impossibility theorem is a general one: there are rare and special cases where it does not

hold, and this paper presents one of these special cases, using a result from chaotic dynamics.

The difference system (1) has two fixed points. It also has a countable infinity of periodic

orbits of all cycle lengths. Rearranging the periodic orbit equation gives Eq. (3) which is a

polynomial equation of order 2p, the first two of which are:

a2y2 þ ða1 2 1Þy þ
ða1 2 4Þða1 þ 2Þ

4a2

¼ 0

and

a3
2y4 þ 2a2

2a1y3 þ a2

3

2
a2

1 2 4

� �
y2 þ

1

2
a3

1 2 4a1 2 1

� �
y þ

1

a2

1

16
a4

1 2 a2
1 þ

1

2
a1 þ 2

� �

¼ 0:

Thus, in finding the periodic points of the equation f pð yÞ ¼ y; we also find exact solutions

to the polynomial equation (3). We shall now show the technical details involved in finding

these solutions.

Since the cosine function is bounded, the solution (2) is also bounded. In addition, as

n increases, the binary expansion of the expression v2n shifts successively leftward, as

described in Ref. [5], and many other texts on chaotic dynamical systems (see, for example,

Ref. [6] or Ref. [7]). A key result is that if the binary digit expansion of v/2p is periodic, then

the behaviour of the solution is also periodic. Thus, finding the v/2p that have periodic

binary expansions leads us to the periodic points of f pð yÞ ¼ y; which in turn, can be

interpreted as the roots of the 2p order polynomial.

Therefore, for the purpose of this paper, only values of

f ¼ v=2p

that have periodic binary digit expansions are relevant to us. Since irrational numbers are not

periodic, we must choose f rational, i.e. we want f ¼ k=L with k; L [ N such that f has
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a periodic binary digit expansion, with period p ¼ log2 ðmÞ; where m is the order of the

polynomial for which we wish to find the roots.

CONSTRUCTING f

Rational fractions with periodic binary digit expansions with periodicity p correspond to the

following expression:

f ¼
X1
m¼1

kð2pÞ2m ¼
k

2 p 2 1
:

As mentioned in the previous section, the periodicity of the binary expansion of f implies

periodicity of the solutions to Eq. (3). To see this, note that:

2pf ¼ 2p
X1
m¼1

kð2pÞ2m

 !
¼
X1
m¼1

ð2pÞkð2pÞ2m ¼
X1
m¼1

kð2pÞð2mþ1Þ

¼
X1
m¼0

kð2pÞ2m ¼ k þ
X1
m¼1

kð2pÞ2m ;
X1
m¼1

kð2pÞ2m ; f ðmod 1Þ

Therefore, 2pf ; f ðmod 1Þ; which implies, since v ¼ 2pf; that 2pv ; v ðmod 2pÞ; and

we reach the conclusion that cos ð2pvÞ ¼ cos ðvÞ; as required.

There is, however, a minor complication to this scheme due to the symmetry of the cosine

function about p in the general solution (2). This symmetry implies that values of v that lie

equidistant from p produce the same solution. Then

jv2 pj ¼ jf2p2 pj ¼ p
2k

2 p 2 1
2 1

����
���� ¼ p

2 p 2 1
jð2k þ 1Þ2 2pj

must be unique for all choices of k. However,

jð2n þ 1Þ2 2pj ¼ j2p 2 ð2n þ 1Þj; ð5Þ

so that k ¼ m and k ¼ 2p 2 ðm þ 1Þ for m ¼ 0; 1. . .2p 2 1 lead to symmetrically identical

solutions to the polynomial. Therefore, only k ¼ 0; 1. . .2p21 2 1 give the unique required

solutions.

The consequence of this is that in order to find all solutions of the 2p order polynomial, we

must seek solutions to the polynomial of order 22p instead, since all periodic points of

f pð yÞ ¼ y also satisfy f 2pð yÞ ¼ y:

We therefore set L ¼ 22p 2 1: However, the converse is not true: not all the periodic points

of f 2pð yÞ ¼ y are periodic points of f pð yÞ ¼ y: Therefore, in enumerating the solutions of the

polynomial, f must satisfy two criteria:

(i) As mentioned above, the symmetry of the cos function implies that f must be less than

(1/2), which in turn implies that k , 22p21

(ii) f must either have a periodic binary digit expansion with period p, or period 2p but

have v symmetric about p under the iterative shift of p digits, i.e. f and f2p lie

equidistant from p.
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Therefore, to construct and enumerate all f with binary digit expansions of period p when

embedded in a sequence of 2p, we set:

k ¼ m þ m2p ¼ mð2p þ 1Þ

for m ¼ 0; 1. . .2p21 2 1: We thus enumerate half of the required solutions. Secondly, from

Eq. (5), to find all the symmetric f with binary digit expansions of period 2p, we then choose:

k ¼ m2p 2 m ¼ mð2p 2 1Þ

for m ¼ 1; 2. . .2p21; and we have thereby enumerated the remaining solutions.

A HIGH-ORDER EXAMPLE

Here we demonstrate an application of the method to the order 8 polynomial f 3ð yÞ2 y ¼ 0:

The following expressions for the coefficients in ascending order of y are:

y0 :
1

a2

2 2
1

2
a1 2 4a2

1 þ
5

4
a4

1 2
1

8
a6

1 þ
1

256
a8

1

� �

y1 : 21 2 16a1 þ 10a3
1 2

3

2
a5

1 þ
1

16
a7

1

y2 : a2 216 þ 30a2
1 2

15

2
a4

1 þ
7

16
a6

1

� �

y 3 : a2
2 40a1 2 20a3

1 þ
7

4
a5

1

� �

y4 : a3
2 20 2 30a2

1 þ
35

8
a4

1

� �

y5 : a4
2ð224a1 þ 7a3

1Þ

y6 : a5
2ð28 þ 7a2

1Þ

y7 : 4a1a6
2

y8 : a7
2

We use the LaGuerre root-finding method [2] with a2 ¼ 21 þ i; a1 ¼ 2 2 i; and we find that

numerical solutions to the polynomial accurate to four decimal places are:

y ¼ { 2 0:25 2 0:75i; 2 0:016 2 0:516i; 0:1265 2 0:3735i; 0:5764 þ 0:0764i; 0:97252

þ 0:4725i; 1:25 þ 0:75i; 1:651 þ 1:151i; 1:6897 þ 1:1897i}

For this polynomial, p ¼ 3 and so L ¼ 22p 2 1 ¼ 63: Next, we enumerate the solutions,

firstly for m ¼ 0; 1. . .2p21 2 1 ¼ 3: Therefore,

k ¼ mð2p þ 1Þ ¼ 0; 9; 18; 27

fm ¼
0

63
;

9

63
;
18

63
;
27

63

	 

¼ 0;

1

7
;
2

7
;
3

7
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or in binary notation

fm ¼ {0:000000; 0:001001; 0:010010; 0:011011}

where for example 0:010010 indicates the infinite binary digit repetition of the sequence

010010.

From these values of fm we then calculate the first half set of solutions, here given to eight

decimal places:

ym ¼
1

a2

2 cos ðfm2pÞ2
a1

2

� �
¼ { 2 0:25 2 0:75i; 0:1265102 2 0:3734898i; 0:97252093 þ 0:47252093i; 1:65096887

þ 1:15096887i}

Secondly, we enumerate the symmetric set for m ¼ 1; 2. . .2p21 :

k ¼ mð2p 2 1Þ ¼ {7; 14; 21; 28}

fm ¼
7

63
;
14

63
;
21

63
;
28

63

	 

¼

1

9
;
2

9
;
1

3
;
4

9

	 


¼ {0:000111; 0:001110; 0:010101; 0:011100}

from which we can calculate the second set of solutions, again to eight decimal places:

ym ¼
1

a2
2 cos ðfm2pÞ2

a1

2

� �
¼ { 2 0:01604444 2 0:51604444i; 0:57635182 þ 0:07635182i; 1:25 þ 0:75i; 1:68969262

þ 1:18969262i}

CONCLUSIONS

By finding a general solution to a discrete, chaotic system and interpreting a problem of

finding roots of a high-order polynomial as the fixed point equation for that chaotic system,

we have shown how to obtain exact roots to the polynomial. We then compared this with the

results of a numerical root-finding method. Of course, we have not presented a general root-

finding method, but we find it intriguing to notice that iterative root-finding methods are often

difference equations in their own right, for which general solutions of particular cases may

well be known.
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