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Abstract— Tracking Parkinson's disease (PD) symptom 

progression often uses the Unified Parkinson’s Disease 

Rating Scale (UPDRS), which requires the patient's 

presence in clinic, and time-consuming physical 

examinations by trained medical staff. Thus, symptom 

monitoring is costly and logistically inconvenient for 

patient and clinical staff alike, also hindering recruitment 

for future large-scale clinical trials. Here, for the first time, 

we demonstrate rapid, remote replication of UPDRS 

assessment with clinically useful accuracy (about 7.5 

UPDRS points difference from the clinicians’ estimates), 

using only simple, self-administered, and non-invasive 

speech tests. We characterize speech with signal processing 

algorithms, extracting clinically useful features of average 

PD progression. Subsequently, we select the most 

parsimonious model with a robust feature selection 

algorithm, and statistically map the selected subset of 

features to UPDRS using linear and nonlinear regression 

techniques, which include classical least squares and non-

parametric classification and regression trees (CART). We 

verify our findings on the largest database of PD speech in 

existence (~6,000 recordings from 42 PD patients, 

recruited to a six-month, multi-centre trial). These findings 

support the feasibility of frequent, remote and accurate 

UPDRS tracking. This technology could play a key part in 

telemonitoring frameworks that enable large-scale clinical 

trials into novel PD treatments. 
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I. INTRODUCTION 

E are aware of neurological control through muscle 

movement and sensing so early in life that is easy to 

take it for granted. However, neurological disorders affect 

people profoundly and claim lives at an epidemic rate 

worldwide. Parkinson’s disease (PD) is the second most 

common neurodegenerative disorder after Alzheimer’s [1], 

and it is estimated that more than one million people in North 

America alone are affected [2]. Rajput et al. report that 

incidence rates have been approximately constant for the last 

55 years, with 20/100,000 new cases every year [3]. A further 

estimated 20% of people with Parkinson’s (PWP) are never 

diagnosed [4]. Moreover, these statistics are expected to 

increase because worldwide the population is growing older 

[5]. In fact, all studies suggest age is the single most important 

risk factor for the onset of PD, which increases steeply after 

age fifty [6]. Although medication and surgical intervention 

can hold back the progression of the disease and alleviate 

some of the symptoms, there is no available cure [7], [8]. 

Thus, early diagnosis is critical in order to improve the 

patient’s quality of life and to prolong it [9].  

The etiology of PD is largely unknown, but the symptoms 

result from substantial dopaminergic neuron reduction, leading 

to dysfunction of the basal ganglia circuitry mediating motor 

and some cognitive abilities [8]. Parkinsonism exhibits similar 

PD-like symptoms, but these are caused by drugs or exposure 

to neurotoxins for example. The main symptoms of PD are 

tremor, rigidity and other general movement disorders. Of 

particular importance to this study, vocal impairment is also 

common [10], [11], with studies reporting 70-90% prevalence 

after the onset of the disease [11]-[13]. In addition, it may be 

one of the earliest indicators of the disease [14], [15], and 29% 

of patients consider it one of their greatest hindrances [13]. 

There is supporting evidence of degrading performance in 

voice with PD progression [14], [16], [17], with hypophonia 

(reduced voice volume) and dysphonia (breathiness, 

hoarseness or creakiness in the voice) typically preceding 

more generalized speech disorders [11], [12]. 

Management of PD typically involves the administration of 

physical examinations applying various empirical tests, 

including speech and voice tests, with a medical rater 
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subjectively assessing the subject’s ability to perform a range 

of tasks. However, the necessity for the development of 

reliable, objective tools for assessing PD is manifested in the 

fact that current diagnosis is poor [2] and autopsy studies are 

reportedly inaccurate [18], [19]. 

Physical test observations are mapped to a metric 

specifically designed to follow disease progression, typically 

the Unified Parkinson’s Disease Rating Scale (UPDRS), 

which reflects the presence and severity of symptoms (but 

does not quantify their underlying causes). For untreated 

patients it spans the range 0-176, with 0 representing healthy 

state and 176 total disability, and consists of three sections: (1) 

Mentation, Behavior and Mood; (2) Activities of daily living; 

(3) Motor. The motor UPDRS ranges from 0-108, with 0 

denoting symptom free and 108 severe motor impairment, and 

encompasses tasks such as speech, facial expression, tremor 

and rigidity. Speech has two explicit headings, and ranges 

between 0-8 with 8 being unintelligible.  

Noninvasive telemonitoring is an emerging option in 

general medical care, potentially affording reliable, cost-

effective screening of PWP alleviating the burden of frequent 

and often inconvenient visits to the clinic. This also relieves 

national health systems from excessive additional workload, 

decreasing the cost and increasing the accuracy of clinical 

evaluation of the subject’s condition. 

The potential for telemonitoring of PD depends heavily on 

the design of simple tests that can be self-administered quickly 

and remotely. Since the recording of speech signals is non-

invasive and can be readily integrated into telemedicine 

applications, such tests are good candidates in this regard. The 

use of sustained vowel phonations to assess the extent of vocal 

symptoms, where the patient is requested to hold the 

frequency of phonation steady for as long as possible, is 

common in general speech clinical practice [20] and in PD 

monitoring [21], [22]. This circumvents some of the 

confounding articulatory effects and linguistic components of 

running speech [38], i.e. the recording of standard phrases 

read aloud by the subject. In order to objectively characterize 

dysphonic symptoms, the recorded voice signals are analyzed 

by speech processing algorithms [22], [23]. 

Intel Corporation’s At-Home Testing Device (AHTD) is a 

novel telemonitoring system facilitating remote, Internet-

enabled measurement of a range of PD-related motor 

impairment symptoms, recently described in detail [24]. It 

records both manual dexterity and speech tests; in this study 

we concentrate only on sustained vowel phonations. 

Previous studies have focused on separating PWP from 

healthy controls [14], [22]; we extend this concept to map the 

severity of voice symptoms to UPDRS. We also wanted to 

determine the feasibility of remote PD clinical trials on large 

scale voice data recorded in typical home acoustic 

environments, where previous studies have been limited to 

controlled acoustic environments and small numbers of 

recordings [22]. 

Recent studies have raised the important topic of finding a 

statistical mapping between speech properties and UPDRS as 

an issue worthy of further investigation, but have not 

addressed it explicitly [17], [24]. Here we present a method 

that first computes a range of classical and non-classical 

speech signal processing algorithms, which act as features for 

statistical regression techniques. These features establish a 

relationship between speech signal properties and UPDRS. 

We show that this method leads to clinically useful UPDRS 

estimation, and demonstrate remote PD monitoring on a 

weekly basis, tracking UPDRS fluctuations for a six-month 

period. This can be a useful guide for clinical staff, following 

the progression of clinical PD symptoms on a regular basis, 

tracking the UPDRS that would be obtained by a subjective 

clinical rater. We envisage this method finding applications in 

future clinical trials involving the study of large populations 

remote from the clinic. 

II. METHODS 

A. Subjects 

This study makes use of the recordings described in Goetz 

et al. [24], where 52 subjects with idiopathic PD were 

recruited. A subject was diagnosed with PD if he had at least 

two of the following: rest tremor, bradykinesia (slow 

movement) or rigidity, without evidence of other forms of 

parkinsonism. The study was supervised by six US medical 

centers: Georgia Institute of Technology (7 subjects), National 

Institutes of Health (10 subjects), Oregon Health and Science 

University (14 subjects), Rush University Medical Center (11 

subjects), Southern Illinois University (6 subjects) and 

University of California Los Angeles (4 subjects). All patients 

gave written informed consent. We disregarded data from 10 

recruits – two that dropped out the study early, and a further 

eight that provided insufficient test data. The selected subjects 

had at least 20 valid study sessions during the trial period. We 

used data from the remaining 42 PWP (28 males) with 

diagnosis within the previous five years at trial onset (mean ± 

std. 72 ± 69, min. 1, max. 260, median 48 weeks since 

diagnosis), with an age range 64.4 ± 9.24, min. 36, max. 85, 

median 65 years. All subjects remained un-medicated for the 

six-month duration of the study. UPDRS was assessed at 

baseline (onset of trial), and after three and six months. At 

baseline the scores were 19.42 ± 8.12, min. 6, max. 36, 

median 18 points for motor UPDRS, and 26.39 ± 10.80, min. 

8, max. 54, median 25.5 points for total UPDRS. After three 

months: 21.69 ± 9.18, min. 6, max. 38, median 21 points for 

motor UPDRS, and 29.36 ± 11.82, min. 7, max. 55, median 28 

points for total UPDRS, and after six months: 29.57 ± 9.17, 

min. 5, max. 41, median 20 points for motor UPDRS, and 

29.57 ± 11.92, min. 7, max. 54, median 26 points for total 

UPDRS. 

B. Data acquisition 

The data was collected using the Intel At-Home Testing 

Device (AHTD), which is a telemonitoring system designed to 

facilitate remote, Internet-enabled measurement of a variety of 

PD-related motor impairment symptoms.  The data is collected 

at the patient’s home, transmitted over the internet, and 

processed appropriately in the clinic to predict the UPDRS 
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score. The AHTD contains a docking station for measuring 

tremor, paddles and pegboards for assessing upper body 

dexterity, a high-quality microphone headset for recording 

patient voice signals and a USB data stick to store test data. A 

LCD displays instructions for taking the tests. Typical audible 

prompts instruct the patient to undertake tasks to measure 

tremor, bradykinesia, complex co-ordinated motor function, 

speech and voice. As part of a trial to test the effectiveness of 

the AHTD system in practice, PWP were recruited and trained 

to use the device. Subsequently, an AHTD was installed in 

their home and they performed tests on a weekly basis. Each 

patient specified a day and time of the week during which they 

had to complete the protocol, prompted with an automatic 

alarm reminder on the device. The collected data was 

encrypted and transmitted to a dedicated server automatically 

when the USB stick was inserted in a computer with internet 

connection. Further details of the AHTD apparatus and trial 

protocol can be found in [24]. 

The audio recordings are of two types: sustained 

phonations, and running speech tests in which the subject is 

instructed to describe static photographs displayed on the 

AHTD’s screen. They were recorded using a head-mounted 

microphone placed 5 cm from the patient’s lips. The AHTD 

software was devised such that an initial audible, spoken 

instruction followed by a “beep” prompted the subject to begin 

phonation: an audio amplitude threshold detector triggered the 

capture of audio, and subsequently the capture was stopped 

one second after the detected signal amplitude dropped below 

that threshold, or 30 seconds of audio had been captured 

(whichever occurred sooner). The voice signals were recorded 

directly to the AHTD USB stick sampled at 24 KHz with 16 

bit resolution. 

In total, after initial screening for flawed recordings (e.g. 

patient coughing) where the signal was removed from the 

dataset, 5,923 sustained phonations of the vowel “ahhh…” 

were digitally processed using algorithms implemented in the 

Matlab software package. As explained in the introduction, we 

used sustained vowels to avoid the confounding effects of 

running speech and thereby simplify the signal analysis. The 

patients were required to keep their frequency of phonation as 

steady as possible, for as long as possible. Six phonations 

were recorded each day on which the test was performed: four 

at comfortable pitch and loudness and two at twice the initial 

loudness (but without shouting).  

C. Feature extraction and statistical regression techniques 

The aim of this study is to analyze the signal, extract 

features representing its characteristics, and map these 

features to UPDRS using regression methods. Ultimately, we 

want to mimic the UPDRS to useful precision with clinical 

importance from the speech signal. In common with other 

studies, we assume that vocal performance deterioration is 

solely due to PD and not some other pathology. 

 

Feature extraction 

Algorithms aiming to characterize clinically relevant 

properties from speech signals can be broadly categorized into 

classical linear and non-classical, nonlinear methods [22], 

[27]-[29]. With the term linear we refer to a method where the 

output is proportional to a linear combination of the inputs; 

conversely, nonlinear methods have more general 

relationships between the inputs and the output. Here, we 

applied a range of classical, and more recently proposed, 

speech signal processing techniques (henceforth we will 

collectively refer to these as ‘dysphonia measures’) to all the 

5,923 signals. Each of the dysphonia measures is aimed at 

extracting distinct characteristics of the speech signal, and 

produces a single number. Inevitably, some of them are highly 

correlated, a concept we discuss later in this paper. 

The classical methods are largely based on linear signal 

processing techniques such as short-time autocorrelation, 

followed by ‘peak picking’ to estimate the fundamental 

frequency F0, which corresponds to the vibration frequency of 

the vocal folds (on average 120 Hz for men and 200 Hz for 

women). The pitch period is the reciprocal of F0. The voice 

amplitude also has clinical value and is determined as the 

difference between maximum and minimum values within a 

pitch period. Successive cycles are not exactly alike; the terms 

jitter and shimmer are regularly used to describe the cycle to 

cycle variability in F0 and amplitude, respectively. Similarly, 

the harmonics to noise ratio (HNR) and noise to harmonics 

ratio (NHR) denote the signal-to-noise estimates. We refer to 

references [27], [30], [36], [37] for a more detailed description 

of these classical speech processing techniques. The software 

package Praat [27] was used to calculate the classical 

algorithms: for comparison, the corresponding algorithms in 

the often-used Kay Pentax Multi-Dimensional Voice Program 

(MDVP) [30] are prefixed by ‘MDVP’ in Table 1. 

The recently proposed speech signal processing methods are 

Recurrence Period Density Entropy (RPDE), Detrended 

Fluctuation Analysis (DFA) and Pitch Period Entropy (PPE) 

[22,29]. The RPDE addresses the ability of the vocal folds to 

sustain simple vibration, quantifying the deviations from exact 

periodicity. It is determined from the entropy of the 

distribution of the signal recurrence periods, representing the 

uncertainty in the measurement of the exact period in the 

signal. Dysphonias such as hoarseness or creaky voice 

typically cause an increase in RPDE. DFA characterizes the 

extent of turbulent noise in the speech signal, quantifying the 

stochastic self-similarity of the noise caused by turbulent air-

flow in the vocal tract. Breathiness or other similar dysphonias 

caused by, e.g. incomplete vocal fold closure can increase the 

DFA value. Both methods have been shown to contain 

clinically valuable information regarding general voice 

disorders [29], and PD-dysphonia in particular [22]. PPE 

measures the impaired control of stable pitch during sustained 

phonation [22], a symptom common to PWP [31]. One 

novelty of this measure is that it uses a logarithmic pitch scale 

and is robust to confounding factors such as smooth vibrato 

which is present in healthy voices as well as dysphonic voices. 

It has been shown that this measure contributes significant 

information in separating healthy controls and PWP [22]. In 

total, applying the 16 dysphonia measures to the 5,923 

sustained phonations, we constructed a 5,923×16 feature 
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matrix with no invalid entries. 

 

Data exploration and correlation analysis 

In the AHTD trial, UPDRS values were obtained at 

baseline, three-month and six-month trial periods, but the 

voice recordings were obtained at weekly intervals; therefore 

we need to obtain weekly UPDRS estimates to associate with 

each phonation. The simplest approach is to use nearest 

neighbor interpolated UPDRS values, which would imply a 

sudden jump mid-way between assessments, and 

physiologically, this does not seem very plausible. Instead, a 

straightforward piecewise linear interpolation was used, with 

the interpolation going exactly through the measured UPDRS 

scores. We interpolated both motor UPDRS and total UPDRS 

to assess the efficacy of the dysphonia measures for predicting 

both scores. The tacit assumption is that symptom severity did 

not fluctuate wildly within the three-month intervals over 

which the UPDRS were obtained. Lacking actual detailed 

weekly UPDRS scores, linear PD progression trend is the 

most biologically plausible and parsimonious interpolation, 

and has been verified in a number of previous studies, many of 

which are reviewed in [39]. Particularly important for our 

argument is a recent study with non-medicated subjects 

followed for 12 months, which supports the use of linear 

UPDRS interpolation [40]. 

Initially, we performed correlation analysis to identify the 

strength of association of dysphonia measures with the 

linearly interpolated UPDRS values. The data was non-

normal, so we used non-parametric statistical tests. We 

computed p-values (at the 95% level) of the null hypothesis 

having no correlation ρ, between each measure and UPDRS. 

Similarly, we calculated correlation coefficients between the 

dysphonia measures. We used the Spearman correlation 

coefficient to assess the strength of association between each 

measure and UPDRS, and between measures. The probability 

densities were computed with kernel density estimation with 

Gaussian kernels. 

 

Regression mapping of dysphonia measures to UPDRS 

This preliminary correlation analysis suggests that, taken 

individually, the dysphonia measures are weakly correlated to 

UPDRS. However, individual correlations alone do not reveal 

the (potentially nonlinear) functional relationship between 

these measures combined together and the associated UPDRS. 

To find this relationship, statistical regression techniques have 

been proposed, the simplest of which is classical least-squares 

regression [32]. Our aim is to maximally exploit the 

information contained in the combined dysphonia measures to 

produce a model that maximizes the accuracy of UPDRS 

prediction. We used three linear and one nonlinear regression 

methods to map the dysphonia measures to interpolated 

UPDRS values, and compared their predictive performance 

[32]. Linear regression methods assume that the regression 

function ���� � �, which maps the dysphonia measures � � ���…�
�, where M is the number of inputs, to the 

UPDRS output y, is linear in the inputs. It can be expressed as ���� � ��  ∑ ����
��� , with the use of the bias term �� being 

optional, i.e. �� � 0 is quite common (this study does not use 

a bias term). The aim is to determine the coefficients (or 

parameters) b, given a large number of input values x and 

output values ���� � �, that minimizes the error in the 

predictions of UPDRS over the whole data set. The linear 

techniques used were classical least squares (LS), iteratively 

re-weighted least squares (IRLS), and least absolute 

shrinkage and selection operator (Lasso). We describe these 

techniques next. 

LS determines the coefficients b that minimize the residual 

sum of squares between the actual (measured) UPDRS and the 

predicted UPDRS:  

�� � argmin� ���� � ������� 
��� �  argmin� �"�� �������


��� #
� 

���  

where �� � ����…��
� is a vector of input measurements 

giving rise to the measured quantity ��, for each ith case and N 

is the number of observations. The statistical assumption 

underlying LS is that the residuals (the difference between the 

actual and predicted UPDRS) are independent and identically 

distributed Gaussian random variables, which may not always 

be a valid assertion, and this can lead to poor estimates of the 

parameters. Thus, to mitigate any large deviations from 

Gaussianity, our proposed IRLS method effectively reduces 

the influence of values distant from the main bulk of the data 

(outliers) by making iterative LS predictions that reweight 

outliers at each step. This robust estimator is computed using 

the following algorithm: 

1) Determine the residuals: $ � ∑ %�� � ∑ �����
��� % ���  

2) Determine the weights w using r: & � exp*�2$ max�$�⁄ -. 

3) Solve the least squares problem using w: 

 �� � argmin�∑ /���� � ∑ �����
��� �� ���  

4) Repeat from the first step, for a pre-specified number of 

iterations (we used 100). In the first iteration, the coefficients 

b are determined using the LS method. 

  

A problem often encountered in such regression methods 

when using a large number of input variables (16 in this case) 

is the curse of dimensionality: fewer input variables could 

potentially lead to a simpler model with more accurate 

prediction. Research has shown that many of the dysphonia 

measures are highly correlated [22] and this finding is 

confirmed in this study (see Table 2), so we can assume that 

taken together, highly correlated measures contribute little 

additional information for UPDRS prediction. Following the 

general principle of parsimony, we would like to reduce the 

number of measures in the analysis and still obtain accurate 

UPDRS prediction. 

The Lasso is a principled shrinkage method that has, 

relatively recently, emerged as a powerful feature selection 

tool, which also offers a mathematical framework enhancing 

the physiological interpretability of the resulting regression 

coefficients [33]. The Lasso has the desirable characteristic of 

simultaneously minimizing the prediction error whilst 

producing some coefficients that are effectively zero (reducing 

the number of relevant input variables) by adjusting a 
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shrinkage parameter. The algorithm selects the best, smallest 

subset of variables for the given shrinkage parameter. 

Decreasing this parameter value causes additional coefficients 

to shrink towards zero, further reducing the number of 

relevant input variables. Then it becomes a matter of 

experimentation to find the optimal compromise between 

reducing the number of relevant input measures and 

minimizing the error in the UPDRS prediction. Specifically, 

the Lasso induces the sum of absolute values penalty: ��01223 � argmin� ∑ ��� � ∑ �����
��� �� ���  subject to ∑ %��% 4 5
��� , where t is the shrinkage parameter, and the 

constraint ∑ %��% 4 5
���  can be seen as imposing the penalty 6∑ %��%
���  to the residual sum of squares, which yields:  

��01223 � argmin� �"�� �������

��� #

�
 6�%��%


���   
���  

Other penalties are possible, including the sum of squares of 

coefficients b (ridge regression), but it can be shown that the 

sum of absolute values penalty leads to many coefficients 

which are almost exactly zero, when the problem is 

underdetermined due to highly redundant inputs, as in this 

case [26]. In practical terms, this also enhances the 

interpretability of the model.  

It may well be the case that the dysphonia measures do not 

combine linearly to predict the UPDRS. Thus, nonlinear 

regression may be required, where the prediction function ���� is a nonlinear combination of the inputs x. To test this 

idea, we used the classification and regression tree (CART) 

method, which is a conceptually simple nonlinear method that 

often provides excellent regression results [32]. The key idea 

behind CART is in finding the best split of the input variables, 

and partitioning the ranges of these variables into two sub-

regions. This partitioning process is repeated on each of the 

resulting sub-regions, recursively partitioning the input 

variables into smaller and smaller sub-regions. This recursive 

procedure can be represented graphically as a tree that splits 

into successively smaller branches, each branch representing a 

sub-region of input variable ranges. This tree is “grown” up to 

T0 splits, learning a successively detailed mapping between all 

the available data and the UPDRS. Although this process is in 

principle very flexible and hence able to reproduce highly 

convoluted mappings, it can easily overfit the data: that is, 

become highly sensitive to noisy fluctuations in the input data. 

To address this danger some splits are collapsed (a process 

known as pruning) and the amount of split reduction is 

determined by the pruning level. 

Here we employed the following strategy: we have 

experimented with the Lasso method by adjusting the constant 

parameter λ, and then observed the surviving and shrinking 

coefficients associated with each dysphonia measure. 

Subsequently, various reduced sets of dysphonia measures 

have been tested with all the regression methods (LS, IRLS 

and CART).  

 

Model selection – Bayesian Information Criterion and Akaike 

Information Criterion 

The Bayesian Information Criterion (BIC) and Akaike 

Information Criterion (AIC) offer a framework of comparing 

fits of models with a different number of parameters [32], and 

have often been used in the context of medical applications 

[34]. These criteria induce a penalty on the number of 

measures in the selected subset, offering a compromise 

between in-sample error and model complexity. The ‘optimal’ 

subset of dysphonia measures is the model with the lowest 

BIC and AIC values. Assuming the errors are Gaussian, these 

two criteria are defined as [32], 789 � ∑ �:� � :���� � ;<�= log�@�A,   C89 � ∑ �:� � :���� � ;<�=  2A, where N is the 

number of data samples, D is the number of measures, :� is 

the true UPDRS value as provided by the dataset, :�� the 

predicted estimate and ;<� is the mean squared error (MSE) 

variance, where DEF � � ∑ �:� � :���� � . 

D. Cross-validation and model generalization 

 To objectively test the generalization performance of the 

proposed regression methods in predicting UPDRS (that is, the 

ability of the models to perform well on data not used in 

estimating the model parameters), we used cross validation, a 

well-known statistical re-sampling technique [35]. 

Specifically, the data set of 5,923 phonations was split into a 

training subset (5,331 phonations) and a testing subset (592 

phonations), which was used to assess generalization 

performance. The model parameters were derived using the 

training subset, and errors were computed using the testing 

subset (out-of-sample error or testing error). The process was 

repeated a total of 1,000 times, with the data set randomly 

permuted in each run prior to splitting into training and testing 

subsets, in order to obtain confidence in this assessment. On 

each test repetition, we recorded the mean absolute error 

(MAE) for both training and testing subsets DCF �GH∑ %:� � :��%�IJ , where N is the number of phonations in the 

training or testing dataset, denoted by Q, containing the 

indices of that set. Testing errors from all 1,000 repetitions 

were averaged. In all cases, the prediction performance results 

were determined following cross-validation. 

III. RESULTS 

A. Data exploration and correlation analysis 

Speech appears explicitly in sections 5 and 18 of the UPDRS 

metric. These entries, taken together, are strongly correlated to 

motor-UPDRS (p<0.001, Spearman ρ=0.44) and total-UPDRS 

(p<0.001, ρ=0.51), indicating strong association between 

speech and UPDRS. These statistically significant findings 

intuitively suggest that the extraction of subtle features from 

speech signals could accentuate this concealed relationship. 

Table 1 summarizes the dysphonia measures used in this 

study. All measures were significantly correlated (p<0.001) 

with linearly interpolated motor-UPDRS and total-UPDRS 

scores. Although statistically significant, none of the measures 

taken individually appears to have a large magnitude of 

correlation to either motor or total-UPDRS. Following 

normalization to the range 0 to 1, the probability densities of 

each dysphonia measure are shown in Fig. 1a. The jitter, 



shimmer and NHR measures are distributed close to zer

whereas HNR, RPDE, DFA and PPE are more evenly 

distributed. Table 2 presents the Spearman rank

between all the dysphonia measures. 

statistically significantly correlated (p<0.001

displays the normalized dysphonia measures against motor 

and total-UPDRS, providing an indication of their associated 

relationship to UPDRS. 

B. Regression analysis 

 Table 3 presents the regression coefficient values for all 

dysphonia measures, for all three linear prediction methods.

The obtained coefficients differed over cross

TABLE I 

CLASSICAL AND NON-CLASSICAL DYSPHONIA MEASURES APPLIED TO 

SUSTAINED VOWEL PHONATIONS, AND THEIR UPDRS

Measure Description 

Motor 

UPDRS 

correlation

MDVP: 

Jitter(%) 

KP-MDVP jitter as a 

percentage 

MDVP: 

Jitter(Abs) 

KP-MDVP absolute jitter 

in microseconds 

MDVP:RAP 
KP-MDVP Relative 

Amplitude Perturbation 

MDVP:PPQ 

KP-MDVP five-point 

Period Perturbation 

Quotient 

Jitter:DDP 

Average absolute 

difference of differences 

between cycles, divided 

by the average period 

MDVP: 

Shimmer 
KP-MDVP local shimmer 

MDVP: 

Shimmer(dB) 

KP-MDVP local shimmer 

in decibels 

Shimmer: 

APQ3 

Three point Amplitude 

Perturbation Quotient 

Shimmer: 

APQ5 

Five point Amplitude 

Perturbation Quotient 

MDVP:APQ 

KP-MDVP 11-point 

Amplitude  Perturbation 

Quotient 

Shimmer: 

DDA 

Average absolute 

difference between 

consecutive differences 

between the amplitudes of 

consecutive periods 

NHR Noise-to-Harmonics Ratio 

HNR Harmonics-to-Noise Ratio -

RPDE 
Recurrence Period 

Density Entropy 

DFA 
Detrended Fluctuation 

Analysis 
-

PPE Pitch Period Entropy 

KP-MDVP stands for Kay Pentax Multidimensional 

Classical measures were obtained using the Praat software package. The 

UPDRS correlation columns are the Spearman non

coefficient between each measure and piecewise linearly interpolated motor 

and total UPDRS. All measures were statistically significantly correlated (

< 0.0001) with motor-UPDRS and total-UPDRS. All speech signals were 

used to generate these results (n = 5,923 phonations).
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shimmer and NHR measures are distributed close to zero, 

whereas HNR, RPDE, DFA and PPE are more evenly 

presents the Spearman rank-correlations 

een all the dysphonia measures. All measures were 

<0.001). Fig. 1 (b, c) 

phonia measures against motor 

UPDRS, providing an indication of their associated 

presents the regression coefficient values for all 

measures, for all three linear prediction methods. 

differed over cross-validation runs 

for all three linear models, as evidenced by the large standard 

deviation of some of the coefficients. However, the testing 

mean absolute error (MAE) and its standard deviation across 

the 1,000-run cross-validation was relatively low, 

that these indicative coefficients are sufficient for

MEASURES APPLIED TO 

UPDRS CORRELATIONS. 

Motor  

UPDRS 

correlation 

Total 

UPDRS 

correlation 

0.124 0.125 

0.072 0.103 

0.105 0.107 

0.120 0.117 

0.105 0.107 

0.138 0.139 

0.139 0.139 

0.116 0.122 

0.123 0.127 

0.166 0.163 

0.116 0.122 

0.131 0.139 

-0.159 -0.163 

0.112 0.143 

-0.131 -0.141 

0.160 0.152 

MDVP stands for Kay Pentax Multidimensional Voice Program. 

Classical measures were obtained using the Praat software package. The 

correlation columns are the Spearman non-parametric correlation 

coefficient between each measure and piecewise linearly interpolated motor 

and total UPDRS. All measures were statistically significantly correlated (p 

UPDRS. All speech signals were 

= 5,923 phonations). 

Fig. 1.  a) Probability densities of the dysphonia measures applied to the 

5,923 sustained phonations. The vertical axes are the probability densities of 

the normalized measures, estimated using kernel density estimation with 

Gaussian kernels. b) Dysphonia measures

Dysphonia measures against total UPDRS. The horizontal axes are the 

normalized dysphonia measures and the vertical axes correspond to UPDRS. 

The grey lines are the best linear fit obtained using IRLS 

section for description of the algorithm. The 

correlation coefficient of each measure with 
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, as evidenced by the large standard 

deviation of some of the coefficients. However, the testing 

mean absolute error (MAE) and its standard deviation across 

validation was relatively low, suggesting 

that these indicative coefficients are sufficient for useful 

 

a) Probability densities of the dysphonia measures applied to the 

5,923 sustained phonations. The vertical axes are the probability densities of 

the normalized measures, estimated using kernel density estimation with 

Gaussian kernels. b) Dysphonia measures against motor UPDRS, and c) 

Dysphonia measures against total UPDRS. The horizontal axes are the 

normalized dysphonia measures and the vertical axes correspond to UPDRS. 

The grey lines are the best linear fit obtained using IRLS - see methods 

escription of the algorithm. The R-values denote the Spearman 

correlation coefficient of each measure with UPDRS. 
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UPDRS prediction. The training MAE for the linearly 

interpolated motor-UPDRS was 6.7 for LS and IRLS, and 6.8 

for Lasso. The testing MAE was 6.7 for LS and IRLS, and 6.8 

for Lasso. The CART method outperforms the linear 

predictors with a training MAE of 4.5 and testing MAE of 5.8. 

The training error for the linearly interpolated total-UPDRS 

was 8.5 for LS, 8.4 for IRLS, and 8.5 for Lasso. The testing 

error was 8.5 for LS, 8.4 for IRLS, and 8.6 for Lasso. CART 

performs better again, producing a training MAE of 6.0 and 

testing MAE of 7.5. IRLS is slightly superior compared to the 

linear predictors. However, CART outperforms it, displaying 

the smallest deviation from the interpolated score.  

C. Model selection and validation 

 Sweeping the Lasso algorithm regularization parameter λ, 

we derived a number of dysphonia subsets. The pruning level 

for CART was set to minimize the MAE, following manual 

spot-checks. We noted that a difference in value of up to 20 

for the pruning level did not produce significantly different 

results, given that the number of splits of the data was large. 

Both information criteria (AIC and BIC) agree on a subset 

containing six measures: MDVP: Jitter (Abs), MDVP: 

Shimmer, NHR, HNR, DFA, PPE for the CART method. This 

subset gives testing errors of 6.80±0.17 for motor-UPDRS and 

8.47±0.27 for total UPDRS using the IRLS method. Similarly,  

we obtain 5.95±0.19 and 7.52±0.25 using the CART method. 

The testing errors remain low and close to the training error, 

indicating that the model has achieved a reasonable estimate 

of the performance we might expect on novel data. The 

difference between predicted and linearly interpolated UPDRS 

values is typically low.  

 In Fig. 2 we demonstrate UPDRS tracking of the patient 

with the severest fluctuation throughout the six-month trial for 

the best linear method, IRLS, and for CART. CART achieves 

TABLE III 

REGRESSION COEFFICIENTS OF  LS, IRLS, AND LASSO  FOR ALL DYSPHONIA MEASURES AND PIECEWISE LINEARLY INTERPOLATED MOTOR AND TOTAL UPDRS. 

Measure 
Motor UPDRS 

LS coefficients 

Motor UPDRS 

IRLS coefficients 

Motor UPDRS 

Lasso coefficients 

(λ=1) 

Total UPDRS 

LS coefficients 

Total UPDRS 

IRLS coefficients 

Total UPDRS 

Lasso coefficients 

(λ=1) 

MDVP:Jitter (%) -87.63 -183.28 -214.45 -768.96 -649.19 -537.90 

MDVP:Jitter(Abs) -6.87·104 -7.64·104 0 -7.04·104 -8.49·104 0 

MDVP: RAP -6.02·104 -6.29·104 0 -2.91·104 -3.36·104 0 

MDVP: PPQ -238.07 -62.70 0 209.26 40.02 50.62 

Jitter:DDP 2.02·104 2.12·104 75.59 1.02·104 1.17·104 241.81 

MDVP:Shimmer 77.78 100.56 23.81 28.62 114.26 9.58 

MDVP:Shimmer (dB) 0.31 -2.49 4.37 -0.38 -4.74 1.67 

Shimmer:APQ3 -1.85·104 -2.43·104 0 -8.19·104 -7.24·104 0 

Shimmer:APQ5 -108.01 -126.06 -66.68 -93.05 -138.32 -2.75 

MDVP:APQ 55.12 83.35 66.28 104.35 107.95 85.74 

Shimmer:DDA 6.16·103 8.09·103 -4.97 2.73·104 2.41·104 0 

NHR 2.14 -5.04 -7.38 -12.45 -8.21 -17.33 

HNR 0.52 0.57 0.61 0.65 0.74 0.74 

RPDE 16.62 20.24 15.25 26.21 30.77 23.81 

DFA -9.54 -15.43 -12.05 -12.47 -19.73 -14.05 

PPE 35.34 37.90 28.50 41.37 39.15 33.41 

The coefficients in this table are indicative (derived over one run of cross-validation with the training subset, n = 5,331). We have noticed considerably different 

values in the 1,000 runs of 10-fold cross validation. However, the fact that the cross-validated test error and test error standard deviation remained small, suggests that 

confidence can be assumed for the above coefficient values. 

TABLE II 

CORRELATION COEFFICIENTS BETWEEN DYSPHONIA MEASURES.   

 MDV

P: 

Jitter 

(%) 

MDV

P: 

Jitter 

(Abs) 

MDV

P:RA

P 

MDV

P: 

PPQ 

Jitter: 

DDP 

MDV

P: 

Shim

mer 

MDV

P: 

Shim

mer 

(dB) 

Shim

mer 

APQ

3 

Shim

mer 

APQ

5 

MDV

P: 

APQ 

Shim

mer 

DDA 

NHR HNR RPD

E 

DFA 

MDVP: 

Jitter(Abs) 
0.90               

MDVP: RAP 0.96 0.82              
MDVP:PPQ 0.96 0.89 0.95             

Jitter:DDP 0.96 0.82 1 0.95            

MDVP:Shimmer 0.65 0.63 0.65 0.69 0.65           
MDVP: 

Shimmer(dB) 
0.68 0.64 0.66 0.70 0.66 0.99          

Shimmer: APQ3 0.62 0.58 0.63 0.66 0.63 0.98 0.96         
Shimmer: APQ5 0.62 0.61 0.62 0.67 0.62 0.99 0.97 0.98        
MDVP:APQ 0.63 0.64 0.60 0.67 0.60 0.96 0.95 0.91 0.96       
Shimmer:DDA 0.62 0.58 0.63 0.66 0.63 0.98 0.96 1 0.98 0.91      
NHR 0.80 0.75 0.75 0.75 0.75 0.65 0.69 0.62 0.62 0.62 0.62     
HNR -0.76 -0.76 -0.73 -0.79 -0.73 -0.80 -0.78 -0.78 -0.79 -0.79 -0.78 -0.76    
RPDE 0.53 0.64 0.45 0.51 0.45 0.48 0.47 0.43 0.46 0.50 0.43 0.61 -0.65   
DFA 0.44 0.50 0.43 0.48 0.43 0.29 0.27 0.26 0.29 0.31 0.26 0.15 -0.36 0.19  
PPE 0.85 0.81 0.77 0.84 0.77 0.64 0.66 0.59 0.62 0.66 0.59 0.73 -0.75 0.55 0.42 

The correlation columns are the Spearman non-parametric correlation coefficients ρ between two measures. All measures were statistically significantly 

correlated (p < 0.0001). Bold italic entries indicate high correlation between measures  (Spearman ρ ≥ 0.95). All speech signals were used (n = 5,923). 
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the smallest prediction error, and tracks the linearly 

interpolated UPDRS more accurately. We have purposefully 

chosen a patient with a highly irregular UPDRS pattern (sharp 

increase and mid-way subsequent decrease) to demonstrate the 

performance of the regression algorithms at tracking UPDRS. 

In results not shown here, we note that patients with smaller 

UPDRS changes over the six-month trial can be monitored 

with even greater accuracy. In general, PD leads to increasing 

UPDRS scores in the long run. However, these scores may not 

be monotonically increasing over shorter intervals for all 

patients (such as in the subject presented in Fig. 2). 

IV. DISCUSSION 

 In this study, we have examined the potential of sustained 

vowel phonations in predicting average PD symptom 

progression, establishing a mapping between dysphonia 

measures and UPDRS. The association strength of these 

measures and (motor and total) UPDRS was explored, using 

three linear and one nonlinear regression method. We have 

selected an optimally reduced subset of the measures 

producing a clinically useful model, where each measure in 

the subset extracts non-overlapping physiological 

characteristics of the speech signal. The comparatively small 

MAE is notable: the sustained vowel phonations convey 

sufficient information to predict UPDRS to clinically useful 

accuracy. It has been demonstrated that motor-UPDRS can be 

estimated within approximately 6 points ( the full range spans 

108 points) and total-UPDRS within 7.5 points (the full range 

spans 176 points), predictions which are very close to the 

clinicians’ observations. These results reflect the best estimate 

of the asymptotic out-of-sample prediction error using the 

1,000 runs 10-fold cross-validation scheme. It is true that the 

nearly 6,000 samples come from 42 patients which could lead 

to some dependence between the samples, dependence that 

might affect the reliability of the cross-validation. However, 

only a small number of patients were recruited to the study, 

and any patient-specific cross-validation is not really reliable: 

there is not enough hold-out data and in our own experimental 

computations the standard deviation of the errors was too 

large. Therefore, simple patient-specific cross-validation is too 

unstable to form a reliable estimate of the asymptotic out-of-

sample prediction error. 

 Furthermore, we showed the feasibility of tracking UPDRS 

changes in time (Fig. 2). Perhaps most importantly, the 

satisfactory reception of the patients themselves towards the 

AHTD and speech tests [24] makes this a promising field for 

further experimentation. The 42 PWP in the present study 

were diagnosed within the previous five years at trial onset 

and displayed moderate symptoms (max motor-UPDRS 41, 

max total-UPDRS 55), so it would be important to look at a 

more severely impaired group in the future. The satisfactory 

UPDRS estimation in moderate symptoms, which are difficult 

to detect, accentuates the potential of the dysphonia measures 

in PD assessment and supports the feasibility of successful 

UPDRS tracking in more severely affected patients. It is 

conceivable that PWP at later stages could be monitored at 

least as accurately, due to their more pronounced vocal 

symptoms. 

 Speech appears explicitly in two UPDRS categories (part II, 

activities of daily living section and part III, motor section). 

One could argue that speech is more strongly related to the 

motor section rather than daily living activities and mentation, 

behavior and mood (part I), because the underlying etiology of 

dysphonic sustained phonations may be physiologically 

attributed to flawed muscle control, most likely caused by 

dopaminergic neuron reduction. This would imply that only 

motor-UPDRS estimation would be tractable. However, the 

results of this study indicate that total-UPDRS estimation with 

clinically useful accuracy is plausible, suggesting that PD 

speech dysphonias could be at least partly related to mood as 

well. This makes it possible to suggest the generalization that 

the underlying causes of PD symptoms such as tremor and 

mood are manifested in impaired speech control. We can only 

speculate on the underlying biological causes, but the 

correlation coefficients reveal statistically significant and 

strong associations between speech and motor function 

 
 

 
Fig. 2.  a) Motor UPDRS and b) total-UPDRS tracking over the 6-month trial 

period for the patient with the severest fluctuation (sharp UPDRS increase 

mid-way and subsequent decrease). The ‘baseline’, ‘3-month’ and ‘6-month’ 

UPDRS scores are shown. The dots denote the piecewise linearly 

interpolated UPDRS value and the circles, predicted UPDRS. The light 

brown bands are the 5-95 percentile confidence interval of the UPDRS 

prediction, and the red bands are the 25-75 percentile confidence intervals. 

Confidence intervals are estimated using 1,000-runs of 10-fold cross-

validated out-of-sample UPDRS prediction. The MAE of each model is also 

quoted, along with the standard deviation. The CART method tracks 

Parkinson's disease symptom progression more accurately than IRLS. The 

out-of-sample MAE was computed by taking the average MAE of the 1,000 

runs of the cross-validation of each testing subset (n = 592 phonations). 
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(ρ=0.44), and between speech and general health 

deterioration, including mood (ρ=0.51). Stebbins et al. [25] 

reported that motor-UPDRS can be explained by six distinct 

and clinically useful, underlying factors: speech, facial 

expression, balance and gait (factor I), rest tremor (factor II), 

rigidity (factor IV), right and left bradykinesia (factors III and 

V), and postural tremor (factor VI). They found relatively low 

correlations between the six factors, suggesting all contribute 

to accurate UPDRS estimation by capturing different aspects 

of PD symptoms. In terms of that study, we have used 

measures within factor I, extracting PD information properties 

only from speech. The implicit argument is that the dysphonia 

measures can adequately reveal PD symptom severity 

estimated by UPDRS, because they capture the effects of PD 

motor impairment manifested in speech production. We have 

demonstrated that predicting both motor and total-UPDRS 

scores to useful precision is possible, because the dysphonia 

measures aid in uncovering functional features of PD 

impairment. 

 Additionally, our findings support the argument that non-

classical dysphonia measures convey important information 

for clinical speech signal processing. This is evidenced in the 

results of the Lasso algorithm, which selected non-standard 

dysphonia measures in all the performed tests (especially 

HNR, RPDE, DFA and PPE), and reflected in the optimal 

dysphonia measure subset selected by the AIC and BIC. This 

suggests that these dysphonia measures contain significant 

information for tracking UPDRS. It also reinforces the 

conclusion reached in a previous study [22], where these non-

standard measures outperformed their classical counterparts in 

separating PWP from healthy controls. Nevertheless, the 

classical measures convey useful information which may not 

be captured by the non-classical techniques: a parsimonious 

combination of classical and non-classical is optimal. That is, 

different dysphonia measures appear to characterize different 

aspects of the PD symptoms represented in the speech signal, 

so that their combination in a regression method captures 

properties useful for clinical purposes. 

 In a general statistical regression setting, some variables 

(here the dysphonia measures) will be mapped to a target 

variable (here UPDRS). Linear regression is a simple and 

often adequate approach, hence providing a benchmark 

against which more complicated nonlinear regression methods 

can be compared. Interestingly, the linear predictors used in 

this study performed very well, with the IRLS always 

presenting slightly better prediction results than LS and Lasso. 

This indicates that the tails of the error distributions of 

UPDRS around the regression line may depart from 

Gaussianity and outliers need to be eliminated from the 

Gaussian prediction error supposed by classical least squares 

methods. Still, its performance is not usefully superior to the 

standard linear LS method. However, the linear regression line 

may not be a good model, which often suggests the use of 

nonlinear predictors. We used CART, which is acknowledged 

as the best “off-the-shelf” method for predictive learning [32]. 

CART always provided approximately 1-2 UPDRS points’ 

improvement in prediction performance over the linear 

methods.  

 Some of the dysphonia measures are highly correlated with 

each other (Table 2), which suggested the removal of those 

with insignificant contribution towards UPDRS estimation. 

This large correlation between measures manifests in the 

parameter values obtained through LS regression, where two 

highly correlated measures are allocated opposite signed, but 

similar magnitude, large value parameters. For example, the 

measures Shimmer APQ5 and MDVP: APQ have a correlation 

coefficient 0.96 and their parameters almost exactly cancel 

each other. To address this artifact, the Lasso algorithm offers 

a principled mathematical framework for reducing the number 

of relevant input variables. Furthermore, recent theoretical 

work has shown that, remarkably, where there is a subset of 

input measures that contribute no additional information over 

others in the set, this algorithm is essentially equivalent to a 

brute force search through all possible combinations of 

measures to find the smallest combination that produces the 

minimum prediction error [26]. 

 The principle of parsimony suggests that given several 

different combinations of dysphonia measures that have equal 

prediction accuracy, preference should be given to the 

combination with the smallest number of measures. To 

account for estimation precision versus model complexity 

(number of dysphonia measures in the subset), we used the 

AIC and BIC values to determine the ‘optimal’ subset. Both 

criteria suggest using the subset with the six measures: 

(MDVP: Jitter (Abs), MDVP: Shimmer, NHR, HNR, DFA, 

PPE) in combination with the CART method, which offers an 

attractive compromise between performance and complexity. 

That is, the selected dysphonia measures in this subset 

complement each other with minimal overlapping information, 

and at the same time capture practically the entire range of 

possible differentiating features of the speech signals useful in 

determining UPDRS values.  

 This selected subset and associated coefficients can be 

given a tentative physiological interpretation. Fundamental 

frequency variations (measured with absolute jitter) and 

variations in signal amplitude (shimmer), are well established 

methods, capturing symptoms manifested in vocal fold 

vibration and lung efficiency. NHR and HNR suggest that 

UPDRS is affected by increased noise, caused by turbulent 

airflow in the glottis, often resulting from incomplete closure 

of the vocal folds. This concept is further backed up by the 

inclusion of DFA. Finally PPE indicates impaired pitch 

control which could be interpreted as deteriorating muscle co-

ordination. This is a sign of flawed neuron action potential 

averaging, suggesting the reduction of dopaminergic neurons 

devoted to speech control. The remaining dysphonia measures 

were shown to convey insignificant additional information to 

be included in the model. 

 We believe these exploratory results could be of value in 

clinical trials, presenting clinical staff with a useful guide to 

clinical rater tracking of PD symptoms by UPDRS remotely, 

and at weekly intervals. This could be particularly useful in 

those cases where the patients are reluctant or unable to make 

frequent physical visits to the clinic. This may also be 

invaluable for future clinical trials of novel treatments which 

will require high-frequency, remote, and very large study 

populations. We remark that it is highly likely that combining 

these results with other PD symptom measures such as those 

obtained using the AHTD dexterity tests may well help to 
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reduce the UPDRS prediction error and enhance the clinical 

value of such multimodal testing in telemedicine applications. 

 We stress again the fact that UPDRS is subjective, and the 

clinicians’ verdict on a patient’s score could vary. In the end, 

often the most relevant aspect of disease progression (or PD 

treatment) is the patient’s perception of symptoms, i.e. 

symptom self-rating. This study was confined to using 

dysphonia measures to predict the average clinical overview 

of the widely used PD metric, the UPDRS. Although the 

dysphonia measures have physiological interpretations, it is 

difficult to link self-perception and physiology. In ongoing 

research work we focus our attempts to establish a more 

physiologically-based model, which will explain the data-

driven findings in this study in terms of the relevant 

physiological changes that occur in PD. 
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