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Abstract 

Clinical acoustic voice recording analysis is usually performed using classical perturbation measures 

including jitter, shimmer and noise-to-harmonic ratios. However, restrictive mathematical 

limitations of these measures prevent analysis for severely dysphonic voices. Previous studies of 

alternative nonlinear random measures addressed wide varieties of vocal pathologies. Here, we 

analyze a single vocal pathology cohort, testing the performance of these alternative measures 

alongside classical measures. 

We present voice analysis pre- and post-operatively in 17 unilateral vocal fold paralysis (UVFP) 

patients and 11 healthy controls, patients undergoing standard medialisation thyroplasty surgery, 

using jitter, shimmer and noise-to-harmonic ratio (NHR), and nonlinear recurrence period density 

entropy (RPDE), detrended fluctuation analysis (DFA) and correlation dimension. Systematizing 

the preparative editing of the recordings, we found that the novel measures were more stable and 

hence reliable, than the classical measures, on healthy controls. 

RPDE and jitter are sensitive to improvements pre- to post-operation. Shimmer, NHR and DFA 

showed no significant change (p > 0.05). All measures detect statistically significant and clinically 

important differences between controls and patients, both treated and untreated (p < 

0.001, AUC > 0.7). Pre- to post-operation, GRBAS ratings show statistically significant and clinically 

important improvement in overall dysphonia grade (G) (AUC = 0.946, p < 0.001). 

Re-calculating AUCs from other study data, we compare these results in terms of clinical 

importance. We conclude that, when preparative editing is systematized, nonlinear random 

measures may be useful UVFP treatment effectiveness monitoring tools, and there may be 

applications for other forms of dysphonia. 

Introduction 

Unilateral vocal fold paralysis (UVFP) is a voice disorder that typical results in breathy, hoarse or 

rough voice and the general inability to produce clear phonation. The weakness of one side of the 

larynx prevents proper adduction of both folds necessary to sustain vibration. The condition is 

often disabling and distressing and can affect quality of life. Surgical intervention in the form of 

medialisation is however often effective at restoring good vocal function. 
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Prior to and after any intervention, assessment of patients in the voice clinic should cover several 

areas: the vocal tract should be examined videostroboscopically; the patient should self-rate their 

voice (using, for example, the Voice Handicap Index) [1]; and the clinician should make an 

assessment of the patient’s voice, using a rating tool such as the (perceptual) GRBAS scale [2]. A 

summary of the recommended tools for assessment is presented in the European Laryngological 

Society guidelines [3]. Although use of the GRBAS scale is recommended, objective measures of 

acoustic voice recordings made in the clinic are also important, not only to quantify the degree of 

dysphonia, but to monitor the patient’s response to treatment. This paper addresses the broad 

question of the suitability of measures for characterizing UVFP objectively. 

To obtain objective measures, a digital acoustic recording of the voice is analyzed using 

mathematical algorithms, resulting in a set of numbers, each number characterizing a specific 

aspect of the voice [4]. Such measures are valuable because, under controlled clinical conditions 

and all other things being equal, an objective measure depends only upon the voice recording and 

the details of the algorithm, and bypasses the many subjective aspects of perception and 

interpretation of the individual clinician inherent to providing a GRBAS score [5]. Hence, objective 

measures can provide an additional level of consistency in the quantification and monitoring of 

dysphonia. 

There are a large number of algorithms for the objective analysis of voice, but perhaps the most 

dominant in clinical practice are the classical jitter, shimmer and noise-to-harmonic ratios (NHR) 

(perturbation) measures [4, 6], and their many variants, based on mathematical signal analysis 

techniques. Signal analysis itself being of utility across many scientific disciplines, there are many 

broad mathematical signal analysis frameworks. Two frameworks have traditionally formed the 

basis of the objective voice measures mentioned above: the classical concepts of waveform-based 

cycle analysis [4, 7], and linear digital signal processing [8]. However, all frameworks make certain 

mathematical assumptions about the signal that may not hold in reality [7], so that objective 

algorithms will have practical limitations stemming partly from the specific assumptions of their 

underlying frameworks. 

From a biophysical standpoint, the celebrated source-filter model of voice production isolates the 

vocal folds and the vocal tract as separate components, with the folds driving the tract (modeled 

as a linear system) into resonance at specific formant frequencies [9]. The natural pairing of the 

linear source-filter model with the linear signal processing framework is of great utility in a wide 

variety of applications [9-11], including objective clinical voice analysis [4, 7]. However, at least 

three decades ago, it was realized that nonlinearity in biophysical models was required to account 

for the observed motion of the vocal folds [12-15], and that the idealized separation of folds and 

tract into separate components misrepresents observed nonlinear feedback interactions between 

the two [10, 13]. Subsequent biophysical modeling [16-20], and empirical voice signal analysis 

studies [21-26], discovered a wealth of characteristically nonlinear phenomena produced by the 

vocal system. 

Furthermore, the voice involves turbulent airflow in the vocal organs, turbulence that is critical to 

the production of consonants and aeroacoustic noise (breath noise) which is a pervasive feature of 

voice production [13, 27-29]. Thus there is compelling evidence for nonlinearity and randomness 

as inherent features of voice production, both in models and signals. 
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By definition, nonlinear phenomena are not naturally suited to linear signal processing analysis [13]. 

Nonlinear waveforms are also characteristically non-repetitive and complex [30]. Thus, neither are 

they suited to cycle analysis, which assumes that the signal is nearly periodic (showing a nearly 

repetitive waveform [7]). This mismatch between mathematical signal analysis framework and 

signal characteristics is of particular relevance to clinical practice because it is precisely the mild to 

severe dysphonic pathological voices, such as in UVFP, that show highly nonlinear and random 

phenomena [13, 25] – healthy voice signals are often nearly periodic and hence more suited to 

perturbation measures based on cycle analysis. 

These limitations of cycle and linear analysis frameworks for pathological voices have motivated 

the framework of nonlinear time series analysis [31] for objective voice measurement [13, 14, 17, 

25, 32-37], more recently extended to encompass random motion as well [13, 14, 38-40]. This 

new framework of nonlinear, random systems analysis is well suited to analyzing the full range of 

nonlinear and noisy phenomena observed in pathological voices [13, 14], where the signals range 

from strictly periodic (repetitive) to highly aperiodic (non-periodic) and random. This is important 

in practice because when the assumptions of cycle or linear analysis no longer hold, as will be the 

case for highly breathy, rough or otherwise dysphonic voices, an objective measure based on this 

framework can fail to return a number, or, which is often worse, return a spurious number which, 

rather than reflecting the severity of the dysphonia, responds to some unanticipated interaction 

between the specifics of the analysis algorithm and the peculiarities of the signal [13, 41]. 

Novel objective measures based on the nonlinear random framework, such as recurrence period 

density entropy (RPDE) and detrended fluctuation analysis (DFA), have recently been devised whose 

output is rigorously characterized for all signals; from the strictly periodic, through nearly periodic, 

to highly aperiodic and purely random signals, on a fixed numerical scale with finite lower and 

upper limits [14]. In theory then, such measures are valuable to clinical practice because of their 

wide applicability to all voice signals, not just those that are nearly periodic and hence amenable to 

perturbation analysis. 

In non-technical terms, DFA characterizes the changing detail of aeroacoustic breath noise in the 

voice. It is therefore sensitive to similar features in the voice as noise-to-harmonic ratio. By 

contrast, RPDE rigorously quantifies any ambiguity in fundamental pitch that might exist, and this is 

useful because an increasing level of ambiguity is often indicative of vocal dysfunction. For nearly 

periodic voices, RPDE and jitter measure similar properties of the signal. Correlation dimension 

can be thought of as a measure of the overall complexity of a voice signal – periodic signals display 

a single, simple oscillating pattern, and will therefore have low dimension. As the voice becomes 

more dysphonic and hence aperiodic, the patterns of oscillation become harder to predict, and the 

dimension increases. 

Given the potential of such novel measures, previous studies [14, 42] have examined their 

performance on a very wide variety of vocal pathologies alongside classical perturbation measures. 

The aim has been to test the relative effectiveness of these novel measures at discriminating 

pathological voices from healthy controls, compared to classical measures. This has demonstrated 

that the novel measures are at least as, and often more, effective, than classical measures at 

discriminating healthy from general dysphonic voices [14, 40]. 
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However, missing in the literature is an analysis of the relative reliability of such measures: for 

healthy voices, by how much do they vary, by comparison to classical measures? That is, how 

relatively consistent are they when applied to controlled, signals from healthy voices? Next is the 

question of relative sensitivity: can these novel measures detect changes in dysphonia, pre- and 

post-operatively for UVFP, and in this respect, are they more or less sensitive than classical 

measures? Finally, do these measures conform in any way to perceptual rating scales? Obtaining 

answers to these questions is a necessary precondition for clinical usefulness in UVFP. 

Previous studies have demonstrated a statistically significant change in nonlinear measures applied 

to healthy controls and untreated UVFP patients [33], demonstrating that nonlinear measures hold 

some promise. Furthermore, recent studies suggest that nonlinear measures correlate well with 

perceptual evaluation by experienced listeners [37] for a broad range of voice disorders. 

Nonetheless, the main questions above remain unanswered. 

Hence, we compare pre- and post-operative patients against healthy controls, using the same 

nonlinear measure, two novel nonlinear random measures, and the same classical perturbation 

measures as in Zhang et al. [33]. We test the relative reliability of these measures on the healthy 

controls. We pay careful attention to controlling for confounding factors such as inhomogeneity of 

patient selection, pathological process and treatment regime, focusing on an accepted, 

standardized surgical intervention applied uniformly across the whole group. We also avoid the 

potentially confounding effect of selective digital audio editing that can occur when preparing the 

recordings for objective analysis. Finally, blinded GRBAS ratings from three different clinical raters 

were obtained pre- and post-operatively to compare against the objective results. 

Our study therefore has several aims: 

1 To assess the reproducibility of classical (jitter, shimmer) and nonlinear (RPDE (H), 

correlation dimension and DFA (α)) methods in analyzing the voices of normal subjects; 

2 To compare classical and nonlinear methods in analyzing the voices of UVFP subjects, 

pre- and post-operatively; 

3 To establish whether any changes in the classical and nonlinear analyses are matched by 

changes in perceptual ratings (GRBAS); 

4 To compare our results with the existing literature. 

To our knowledge, this is the first direct assessment of the relative performance of a range of 

novel nonlinear techniques alongside classical perturbation measures, comparing pre- and post-

operative UVFP voices. 

Methods 

Demographics and recording protocol 

We recorded the voices of 17 patients  (9 male and 8 female) with UVFP. Acoustic recordings 

were made using the Laryngograph system (www.laryngograph.com, London, UK), under 

standardized conditions, in the same quiet room. A microphone (Knowles EK-3132, 

omnidirectional electret condenser type) was placed 16.5cm from the patient’s mouth and 

http://www.laryngograph.com/
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recordings were taken (22.05kHz, 16 bits). We also recorded 11 healthy male and female controls 

under similar quiet conditions. 

All subjects were recorded sustaining the vowel /a/ at a loudness and pitch that was comfortable 

to them and was at approximately conversational level. We obtained 166 recordings of separate 

vowel phonations: an average of nearly six phonations per subject. All UVFP patients were 

recorded dictating the standard running speech test “The North Wind and the Sun” for the 

purposes of GRBAS scoring alone. 

Surgical intervention 

Each UVFP patient underwent a standard operative procedure: Isshiki type 1 (medialization) 

thyroplasty [43]. A standard sedative (a propofol, remifentanil and alfentanil infusion) was 

administered and the procedure was performed under local anesthesia. A transverse skin incision 

was made at the level of the crico-thyroid membrane and the strap muscles were retracted 

laterally.  The thyroid lamina was exposed.  A window was cut (or drilled, in the case of calcified  

cartilages) and the internal periosteum was elevated. Through the window in the thyroid cartilage, 

a silastic shim was inserted to medialise the paralyzed vocal fold. Prior to insertion, the shim was 

cut to an appropriate size for the individual patient, depending on the size of the of glottic gap 

seen on laryngoscopy. With the shim in situ, the sedation was reduced until the patient was lightly 

sedated and able to phonate. The patient was then asked to perform some vocal tasks and if the 

voice was deemed to be too breathy, a larger shim was cut and inserted. The skin was closed in 

layers with no drain. All cases were performed by the same surgeon (MH) and patients were 

discharged home within four hours of surgery. 

Post-operative recording 

Following a period of recuperation and acclimatization, the UVFP patients’ voices sustaining the 

vowel /a/ and dictating the running speech test were re-recorded several months after surgery 

under the same acoustic conditions. 

Preparation of recordings – systematic trimming 

At the onset of a vocal gesture, the voice may take a fraction of a second to stabilize.  In order to 

circumvent any confounding effect of spurious instability in phonation at the very start and end of 

phonations, 0.12 seconds of the signal at the start and end of phonations was removed from every 

recording. Figure 1 illustrates this “trimming” process. This 0.12 second trimming was applied 

systematically across all phonations from both healthy and UVFP subjects. 

GRBAS rating 

Three experienced speech and language therapists (blinded as to whether the patients were pre- 

or post-operative), independently rated each of the pre- and post-operative voice recordings 

(both sustained vowels and running speech tests - “The North Wind and the Sun” passage) using 

the GRBAS scale.  Overall grade (G), roughness (R), breathiness (B), asthenia (A) and strain (S) 

were each evaluated and assigned a value of 0, 1, 2 or 3 (where 0 corresponds to “none” and 3 to 

“severe”). 

Objective measures 

Sustained phonations from all subjects were analyzed using objective measures, pre- and post-

operatively for UVFP patients. Six measures: (1) Jitter (ABS), (2) Shimmer (dB), (3) NHR, (4) 
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RPDE, (5) DFA and (6) correlation dimension were calculated for each sustained vowel recording. 

The first three perturbation measures were calculated using the Praat software system [44]. 

Perturbation methods: Jitter, shimmer and NHR 

Praat’s perturbation measures are based on estimating cycle lengths using the waveform-matching 

algorithm, searching for the best match between successive cycles, occurring at a cross-correlation 

maximum. Hence the measures are based on a combination of the two frameworks of cycle 

analysis (assuming that the signal is composed of successive similar cycles), and classical linear 

signal processing (for estimating the extent of the match between putative cycles). The Jitter (ABS) 

algorithm is the average absolute difference between consecutive cycle lengths, in seconds. For 

reference purposes, this coincides with the Kay Pentax Multi-Dimensional Voice Program “Jita” 

parameter [45], where 83.200μs is given as the lower limit for pathological voice. The Shimmer 

(dB) parameter is 20 times the average absolute (base 10) logarithm of the difference between the 

amplitudes of successive cycles, in decibels (dB). This coincides with MDVP parameter “ShdB” 

where 0.350dB is suggested as the lower limit for pathology. The NHR algorithm is calculated as 

the average inverse harmonics-to-noise ratio (HNR) over each cycle. The (windowed) 

autocorrelation is calculated and the time lag at which the autocorrelation achieves a global 

maximum is found. The HNR for each cycle is 10 times the logarithm of the ratio of the maximum 

autocorrelation, to one minus this maximum autocorrelation value [46]. For further details, see 

Boersma et al. [46]. 

Nonlinear analysis methods: RPDE (H), DFA (α), and correlation dimension 

The RPDE and correlation dimension measures are based on the framework of nonlinear time 

series analysis, which assumes that the signal is generated by a model of the physical processes of 

voice production itself (expressed as a set of nonlinear differential equations optionally driven by a 

random input). They admit a larger class of signals than the cycle or linear frameworks, but include 

signals that conform to both of these frameworks as special cases. An attempt is made to infer 

properties about a nonlinear (and optionally random) model for the physical processes that 

generated the voice signal by constructing a time-delay embedding (that is, a set of vectors 

constructed from time-lagged copies of the signal). Four time lagged copies were used at a time lag 

of 0.002 seconds, these embedding parameters estimated using a brute-force search procedure to 

satisfy known special cases [14].   

From the lagged vectors, RPDE estimates the relative uncertainty in the expected recurrence 

periods of the embedded signal, that is, the time intervals between successive close returns to the 

same point in the space spanned by the lagged vectors. It can be shown that this generalizes the 

notion of cycle length for cyclic signals, and period for exactly periodic signals [14]. Thus both cyclic 

and periodic signals are special cases of recurrent signals. RPDE then constructs a distribution of all 

recurrence times. Exactly periodic signals have only one recurrence period, hence the relative 

entropy (uncertainty with respect to uniformly random recurrence times, denoted Hnorm) of the 

distribution will be zero, indicating no uncertainty about the recurrence period (cycle length/exact 

period) of the signal. Nearly periodic signals will show some spread of recurrence periods – the 

uncertainty will be slightly larger. Aperiodic signals, will show a typically large spread of recurrence 

periods and hence have a still larger Hnorm. At the most extreme, a completely random signal 
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shows recurrence periods of all lengths, with larger periods being more rare than smaller periods, 

and Hnorm is then at most unity. 

Of fundamental interest in the nonlinear time series analysis framework are chaotic signals that are 

often characteristically aperiodic [30]. In the lagged vector space, many of these chaotic signals 

have fractal dimension (that is, for example, they occupy less space than a 3D object, but more 

space than a flat, 2D object). Evidence points to many examples of aperiodic voice signals that 

appear chaotic [17-19, 24, 25]. Thus, measuring the dimension of the signal in the lagged space 

might usefully characterize voice disorders, assuming that healthy voices will be very close to 

periodic and hence have low dimension, and that dysphonic signals will have a much higher 

dimension. The correlation dimension measure is one approach to estimating this lagged space 

dimension D; here we use the correlation dimension algorithm proposed by Judd et al. [47]. 

Turbulence is typically characterized by persistent random fluctuations on all time and spatial 

scales – a commonly held theory proposes that the logarithm of the magnitude of these 

fluctuations scales linearly with the logarithm of the temporal scale [48]. This is a defining property 

of random fractals signals, and many dysphonic voice signals show this kind of behaviour on small 

time scales. Measuring the acoustic manifestation of this turbulence contributes to the detection of 

dysphonia [13, 14, 40]. DFA attempts to measure this scaling factor α in the fine scale detail of the 

noise in the voice signal. Here the scale factor is normalized by a nonlinear transformation to lie in 

the range zero to unity (the normalized scale factor is denoted αnorm). 

Relative reliability of objective measures 

Addressing the question of comparative reliability of the objective measures, the (fractional) 

variability of each measure applied to the healthy sustained phonations was calculated. The 

variability was estimated nonparametrically as the interquartile range (the difference between the 

75th and 25th percentile) divided by the median of all healthy phonations. In order to test the 

effect of altering the systematic trimming during the preparation of the recordings described 

above, the variability for each measure was calculated as the trimming length was varied from 0.04 

to 0.28 seconds in 0.04 second steps. 

Results 

Table 1 shows the reliability analysis results, assessed using the fractional variability of each 

objective measure applied to all the healthy phonations. The DFA measure shows the smallest 

variability, and NHR the largest variability across all healthy subjects. The median variability across 

all measures is somewhat sensitive to the systematic trimming time used in the preparation of the 

recordings. 

Next, Figure 2 shows the perceptual GRBAS scoring results for the UVFP patients. The total, 

breathiness, asthenia and grade GRBAS scores show clear separation pre- and post-operation. The 

strain and roughness sub-categories do not show clear separation.  

Figure 3 gives a graphical representation of the objective measures applied to both healthy and 

UVFP subjects (both pre- and post-operatively). It can be seen that the RPDE measure shows 

visibly clear changes from untreated (solid black line) to treated (broken black line) recordings, 

mirroring the GRBAS results. The RPDE curve shows a clear shift to the left. An obvious shift 
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from pathological towards healthy is seen in both RPDE, dimension, DFA and shimmer results. For 

jitter and NHR, by contrast, the shift before and after treatment is not so clear. The DFA and 

NHR measures show no clear, visible change between untreated and treated patients. 

Table 2 lists summary statistics for the measures. Both median and mean of all measures show 

differences pre- and post-operation, and Table 3 details the corresponding numerical results of the 

statistical analysis. Due to the heavy non-normality of the data, statistical significance and effect 

sizes are assessed non-parametrically, significance using the rank-sum test, and effect size using the 

receiver operating characteristic area under curve (ROC AUC), which is a measure of the overlap 

between categories, in that an AUC value of unity indicates that it is possible to perfect separability 

between categories, and an AUC of 0.5 indicates that we can do no better than uniformly random 

classification [49].  

The graphical findings above are confirmed in that GRBAS total (p < 0.001), breathiness (p < 

0.001), asthenia (p < 0.001), grade (p < 0.001), RPDE (p = 0.03), and jitter (p = 0.03) all show a 

statistically significant change (95% significance level) pre- and post-operatively (treated versus 

untreated rows in the table). The largest effect size (AUC) corresponds to the most clinically 

important change and this is achieved by the GRBAS grade score (AUC = 0.946). Of the objective 

measures, only RPDE and jitter show a significant change and are of equal importance (AUC = 

0.634). All objective measures show a significant and clinically important difference when detecting 

normal versus UVFP, either treated or untreated. 

Discussion 

The first question posed in the introduction asked about the relative reliability of the objective 

measures applied to healthy controls. The results shown in Table 1 are interesting because they 

demonstrate that the novel nonlinear (random) measures show considerably less variability as a 

fraction of their median values than the classical perturbation measures tested here. In fact, the 

least variable of these novel measures (DFA) shows almost 1/6th the variability of NHR. This may 

not be of particular consequence here because DFA could not detect the pre- to post-operative 

improvement, but perhaps more importantly the only perturbation measure significantly able to 

detect a pre- to post-operative change in UVFP (jitter), is nearly three times as variable as the 

correlation dimension measure. 

The next question posed is one of relative sensitivity to the voice changes evidenced by GRBAS 

scoring in these UVFP patients post intervention. Figure 3 and Table 3 clearly demonstrate that 

although it is not possible to achieve the same level of clear discrimination as perceptual scoring, 

of all the objective measures, the novel RPDE and jitter measures are the most indicative. 

The final question asks how the objective measures relate to the perceptual scores. Here, we can 

see that the RPDE and jitter measures best reflect the large change detected pre- and post-

operatively, discriminating between categories with about 2/3 the separability of the GRBAS grade 

score. 

We now investigate how these results sit with other studies. Several general comments about 

comparisons across studies must be made first. Our first observation, highlighted by our reliability 

results, is that perturbation methods are subject to inherently large variability, even for controlled, 
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healthy voices. For example, a recent study showed poor test-retest reliability (that is, the 

consistency of the measure without intervention) [41]. Thus, several repetitions of the sustained 

phonation are required to minimize sampling variability even in the absence of pathology. Here we 

take, on average, six phonations per subject, and include all phonations in the overall statistical 

analysis. Other studies do not do this [50], or take the mean measure over three phonations [51], 

or take a single phonation with the lowest jitter measure [52]. 

Similarly, although “jitter” and “shimmer” appear to name one algorithm, this disguises a plethora 

of different algorithms, across many different software vendors [41]. Seemingly trivial differences 

in cycle length measurement can give very different measures [7]. Many studies give no algorithm 

details. 

Furthermore, untreated UVFP voices can be so dysphonic that the cycle and/or linear signal 

processing mathematical framework becomes inapplicable, and no perturbation analysis is possible 

[6, 33, 41]. In this study, for example, one of the pre-operative voice recordings was very severely 

dysphonic, and shimmer measurements were not possible at all. Thus, it is difficult to get 

statistically powerful results, particularly for the pre-operative category. Often, this forces hand 

editing of segments of the voice recording (described  in, for example, Uloza et al. [51]) so that 

perturbation analysis becomes possible. However, this practice is inherently subjective and thus 

may introduce subtle and unintended selection biases. Hand editing methodology also differs 

considerably, some studies analyzing a “middle” section and discarding undefined starts and ends 

[51, 52], or selecting “the most stable 0.5 seconds” [52], without further methodological 

clarification. Our reliability results suggest that a systematic, algorithmic approach to editing the 

voice signal for objective analysis is necessary, because the variability of measures depends on 

which parts of the recording are included for analysis. 

Finally, comparing studies on the results of statistical significance tests alone is of limited usefulness 

in practice, because a small but uninteresting effect can reach a high level of significance with large 

sample size, conversely, a clinically important effect can be statistically insignificant due solely to a 

small number of subjects [53]. We survey some representative studies, and re-analyze reported 

data to make direct comparisons with our results, by calculating significances and AUC values from 

reported category means and standard deviations [49], assuming their data is normal. 

Previous work using nonlinear measures has tended to focus on a broad range of pathologies and 

few studies have examined changes following therapy. However, Zhang et al. [34] investigated a 

cohort of patients with vocal fold polyps. In that study, jitter, shimmer and two nonlinear 

measures (correlation dimension and second-order entropy) were undertaken before and after 

surgery. The nonlinear measures showed significant decrease after surgery. Shimmer showed no 

significant change after surgery, but jitter did. These aspects of the study agree with our results. 

Unfortunately, direct comparisons of effect size are not possible because full summary statistics for 

the data are not disclosed. 

A further study [33] tested the performance of correlation dimension against jitter and shimmer 

on voices of patients with UVFP and healthy controls. Jitter and shimmer were calculated only for 

that subset of voices that were nearly periodic, and correlation dimension was calculated for all 

the voices in the study. All three measures showed a statistically significant difference between 

healthy controls and UVFP, shimmer showing the largest AUC, jitter and correlation dimension 
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showing a lower (but similar) effect. Our study confirms these findings (see last rows in Table 1) 

from the view of significance alone, but we find much larger AUC values. We note that in that 

study, jitter and shimmer could not be applied to the very dysphonic voices. 

Across studies, jitter is found to have a significant change pre- to post-surgery [50-52, 54], ranging 

in effect size from AUC = 0.634 to 0.974, variability that is consistent with Zhang et al. [42]. Our 

jitter effect is on the low side. By contrast, studies disagree about the significance of shimmer, and 

we find no significant effect. All studies agree that NHR shows no statistical change after 

thyroplasty. 

Most of these studies assume that the normal distribution is a good model for the data. The high 

variability and low consistency of perturbation measures discussed above often generates large 

outliers. Coupled with the fact that our data is highly non-normal, this raises doubts about the 

validity of such non-robust statistical methods. No normality tests results or plots of the data are 

provided in these studies. As an illustration of the sort of variability that can occur, we calculated 

normal Student’s t-test significances and compared them to our rank-sum results: normal 

assumptions then admit both dimension and NHR as being significant, even though their AUC’s are 

too small to be interesting. 

Previous studies have shown that both RPDE and DFA are useful in separating healthy from 

dysphonic voices of many causes [13, 14]. However, DFA did not show a significant change pre- 

and post-operatively in UVFP, although, as with all the other measures, it did detect a change 

between healthy and dysphonic voices. This contributes an additional layer of detail to other 

studies which found broad differences in DFA between healthy and pathological voices. 

One of the strengths of the present study is in the homogeneity of the patients: all had a defined 

pathology that was managed with a uniform and repeatable operation. This study therefore avoids 

many of the confounding factors seen in studies of other vocal pathologies. To our knowledge, this 

is the first direct assessment of the relative performance of a range of novel nonlinear techniques 

alongside classical perturbation measures, comparing pre- and post-operative UVFP voices. 

Nonlinear objective measures have additional benefits for many clinical applications. Most 

importantly, the nonlinear framework does not rely on near periodicity of the acoustic signal, and 

is, consequently, applicable to the full range of periodic to highly aperiodic voices typically 

encountered in clinical practice. Furthermore, measures such as RPDE and DFA produce outputs 

constrained to lie on a fixed zero-one numerical scale, and this is useful for clinical communication 

of the severity of dysphonic symptoms. 

We now provide some notes on interpretation of these novel nonlinear (random) measures. 

Classical perturbation methods based on cycle analysis might best be described as morphological 

methods: that is, they are designed to find and characterize specific kinds of sequences of waveform 

shapes in a signal (when considered as a graph of acoustic pressure against time). Although these 

sequences of waveforms are observed in most voice signals, there is no theoretical basis that 

affords confidence that the vocal system will not produce waveforms falling outside these narrowly 

defined sequences. Thus, cycle analysis methods require near periodicity, but many real voice 

signals are far from near periodic, for well-motivated physiological reasons [13]. 
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By contrast, nonlinear (random) methods assume that there is an underlying mechanistic or random 

process that generated the recording, and attempt to reconstruct and characterize aspects of this 

underlying process from the recorded signal. In particular, RPDE measures one aspect of the 

recurrence of the underlying physical state of the vocal system: that is, qualitatively, the extent to 

which it repeats the same sequence of configurations and momentum, without specifying in 

advance the signal morphology of these constituent sequences. One typical example is 

subharmonic vibration, which can naturally develop even in normal phonation. This has an 

ambiguous interpretation within the linear framework, because often the subharmonic has nearly 

the same amplitude in the power spectrum as the fundamental pitch. RPDE will typically detect 

both fundamental and subharmonic, but, RPDE will show an increased uncertainty value Hnorm 

relative to phonation without subharmonics. Thus, in this situation, RPDE rigorously quantifies the 

genuine ambiguity in fundamental pitch, and this ambiguity is often indicative of vocal dysfunct ion. 

DFA characterizes the changing detail of aeroacoustic breath noise in the voice. Although there 

are a very large number of classical noise measures, these are usually based on spectral analysis 

using linear signal processing. Aperiodic dysphonia typical of chaotic vibration is inseparable from 

aspiration noise in spectral analysis [13], even though the chaotic signal can be entirely smooth in 

the time domain. DFA is sensitive to the temporal details of the signal alone, whether or not the 

slow vibrational motion in the vocal system is aperiodic, nearly periodic or strictly periodic [13]. 

Excessive aeroacoustic noise is a common feature of many dysphonias, the underlying physical 

origin of this being turbulent airflow in the larynx and vocal tract [27-29], often enhanced by 

incomplete vocal fold closure and aphonia in severe UVFP cases [41]. 

All mathematical frameworks have limitations, including the nonlinear (random) framework. Here 

we remark that RPDE and correlation dimension will not be applicable to completely silent signals, 

or more generally, those that show less than one full repetition. In addition correlation dimension 

requires sufficiently noise-free recordings. Similarly, DFA requires that the signal has enough 

bandwidth to detect any scaling properties in the fine scale detail. Nonetheless, these limitations 

are far less restrictive than those that must apply for reliable classical perturbation analysis.  

Conclusion 

In this study, we compared classical objective acoustic measures for UVFP dysphonia based around 

the cycle and linear signal processing mathematical frameworks, against novel measures based on 

the framework of nonlinear (random) time series analysis. We tested the reliability of all these 

measures on healthy controls, and found that the nonlinear methods were more stable and 

reproducible than the classical measures. We then quantified the performance of these measures 

in detecting improvements in dysphonia after surgical treatment for UVFP, in a cohort of patients 

that showed perceptually-rated improvements according to standardized expert clinical judgment. 

Our main finding is that, when potential systematic biases due to hand-editing of acoustic 

recordings were circumvented, only one of the nonlinear measures and one of the perturbation 

measures were able to provide a statistically significant detection of this change, although this was 

dependent on the statistical assumptions. This measure has, however, comparable performance to 

the only classical perturbation measure shown consistently able to detect the change. The main 

contribution of this study is to provide further evidence that nonlinear objective measures are able 
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to perform at least as well as their classical counterparts, and that they change consistently with 

perceptual voice analysis scales [37]. 

We believe these results motivate future research developing further applications for the 

nonlinear analysis and additional comparisons with classical measures. It is possible that, with 

widening experience of these newer measures they will be available alongside classical measures in 

commercially available software packages, where they can provide more sophisticated, objective 

tracking and monitoring of dysphonia in the treatment of voice disorders. We conclude with the 

recommendation that nonlinear random acoustic objective measures should play an increasing role 

in the assessment protocol in the voice clinic. 
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Figure 1: Illustration of systematic trimming used to select useful parts of the 

sustained phonations for subsequent analysis by objective measures. The dark shaded 

areas indicate the portion removed at the start and end of the phonation, with 

exactly equal lengths in seconds from the start and end. This removal was applied 

uniformly across all phonations. 
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Figure 2: Histograms of subjective GRBAS ratings for the UVFP phonations. Unfilled 

white bars are pre-operative scores, filled black bars are post-operative. Horizontal 

axes is the GRBAS score in each sub-category, vertical axis is the number of instances 

of that score. 
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Figure 3: Estimated probability of all measures (a) recurrence probability density 

entropy (RPDE), (b) normalized detrended fluctuation (DFA), (c) correlation 

dimension, (d) absolute jitter (seconds), (e) shimmer (dB) (f) noise-to-harmonics ratio 

(NHR). See text for full algorithm descriptions. The probabilities for the three 

separate groups normal voices (solid gray lines), pre-operative UVFP (solid black 

lines) and post-operative UVFP (dashed black lines), are estimated using the kernel 

density method with Gaussian kernel. The vertical axes are probabilities. The vertical 

lines are the median values of the measures for each group. 
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Table 1: Reliability analysis of objective measures applied to healthy phonations 

prepared by trimming, as described in the text. The “Trim” row is the time, in 

seconds, of voice signal removed from the onset and end of phonation, before analysis 

with the measures. The other rows show the (nonparametric) fractional variability of 

each measure: the ratio of the interquartile range to the median across all healthy 

phonations. The rows are arranged in ascending order of variability. The last row is 

the median variability across all measures for each trim length. 

Trim (s) 0.04 0.08 0.12 0.16 0.20 0.24 0.28 

DFA 0.18 0.18 0.18 0.18 0.19 0.18 0.19 

Dimension 0.26 0.29 0.26 0.25 0.25 0.25 0.26 

RPDE 0.38 0.40 0.43 0.45 0.42 0.38 0.39 

Shimmer(dB) 0.41 0.43 0.44 0.46 0.46 0.47 0.49 

Jitter(ABS) 0.73 0.76 0.78 0.78 0.78 0.78 0.72 

NHR 1.03 1.04 0.93 0.95 0.97 1.01 1.08 

Median 0.40 0.41 0.43 0.45 0.44 0.43 0.44 
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Table 2: Summary statistics for all measures in each category. Range is the difference 

between the maximum and minimum values over the category, and IQR is the 

interquartile range (75th – 25th percentile difference). SD is standard deviation. 

Measure Untreated 
median 

(range/IQR) 

Treated 
median 

(range/IQR) 

Healthy 
median 

(range/IQR) 

Pre-
operative 

UVFP 
mean 

(SD) 

Post-
operative 

UVFP 
mean 

(SD) 

Healthy 
mean 

(SD) 

GRBAS(Total) 6.50 

(11.00/4.00) 

3.00 

(10.00/2.00) 

 6.43 

(2.58) 

3.28 

(2.26) 

 

GRBAS(Grade) 2.00 

(2.00/1.00) 

1.00 

(2.00/0.00) 

 1.78 

(0.62) 

1.04 

(0.55) 

 

GRBAS(Roughness) 1.00 
(3.00/1.00) 

1.00 
(2.00/1.00) 

 1.14 
(0.76) 

0.87 
(0.68) 

 

GRBAS(Breathiness) 2.00 
(3.00/1.00) 

0.00 
(2.00/1.00) 

 1.54 
(0.74) 

0.51 
(0.66) 

 

GRBAS(Asthenia) 1.00 
(3.00/1.00) 

0.00 
(2.00/1.00) 

 1.29 
(0.82) 

0.38 
(0.57) 

 

GRBAS(Strain) 1.00 
(3.00/1.00) 

0.00 
(2.00/1.00) 

 0.68 
(0.77) 

0.47 
(0.58) 

 

RPDE 0.59 
(0.55/0.21) 

0.50 
(0.49/0.18) 

0.36 
(0.46/0.16) 

0.56 
(0.14) 

0.51 
(0.12) 

0.35 
(0.12) 

DFA 0.72 

(0.28/0.08) 

0.71 

(0.23/0.07) 

0.65 

(0.24/0.12) 

0.72 

(0.06) 

0.71 

(0.05) 

0.64 

(0.07) 
Dimension 3.40 

(1.91/0.63) 

3.02 

(2.29/0.86) 

2.53 

(1.99/0.77) 

3.18 

(0.49) 

2.93 

(0.60) 

2.51 

(0.49) 
Jitter(ABS) (ms) 0.06 

(0.26/0.06) 

0.04 

(0.27/0.04) 

0.01 

(0.04/0.01) 

0.08 

(0.07) 

0.06 

(0.05) 

0.01 

(0.01) 
Shimmer(dB) 0.65 

(1.60/0.30) 
0.49 
(1.92/0.44) 

0.14 
(0.40/0.06) 

0.69 
(0.37) 

0.61 
(0.40) 

0.17 
(0.08) 

NHR 0.03 
(0.81/0.11) 

0.02 
(0.26/0.03) 

0.00 
(0.05/0.00) 

0.09 
(0.15) 

0.03 
(0.05) 

0.01 
(0.01) 
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Table 3: Intercategory differences for each measure, for this study and the other studies surveyed. Significance is quantified using the (nonparametric) rank 1 
sum test against the null hypothesis of equal medians (rank sum p-value), and, for comparison against other studies, Student’s t-test against the null 2 
hypothesis of equal means. Effect size is quantified by the receiver operating characteristic area under curve (ROC AUC). Entries marked (*) are significant 3 
at the 95% level. Within each intercategory comparison, measures are ranked in order of descending effect size found in this study. 1Bi-normal AUC 4 
calculations based on mean and standard deviations published in these studies. 5 

Measure This study 1Dursun et al. 
(2008) [50] 

1Uloza et al. 
(2005) [51] 

Zhang et al. 
(2005) [33] 

1Lu et al. (1996) 
[54] 

1Shin et al. 
(2002) [52] 

 Rank-sum 
p-value 

t-test p-
value 

ROC 
AUC 

t-test p-
value 

ROC 
AUC 

t-test p-
value 

ROC 
AUC 

Rank-
sum p-

value 

ROC 
AUC 

t-test p-
value 

ROC 
AUC 

t-test 
p-

value 

ROC 
AUC 

 Post-operative UVFP vs. pre-operative UVFP 
GRBAS(Grade) <0.001* <0.001* 0.946 <0.001* 0.880         
GRBAS(Breathiness) <0.001* <0.001* 0.938 <0.001* 0.965         
GRBAS(Asthenia) <0.001* <0.001* 0.920 0.297 0.605         

GRBAS(Total) <0.001* <0.001* 0.868           
GRBAS(Strain) 0.209 0.128 0.780 0.401 0.584         
GRBAS(Roughness) 0.080 0.070 0.778 0.027* 0.722         
RPDE 0.030* 0.047* 0.634           

Jitter(ABS) 0.030* 0.038* 0.634 0.003* 0.807 <0.001* 0.843   <0.001* 0.974 0.013* 0.726 
Dimension 0.053 0.036* 0.622           
Shimmer(dB) 0.073 0.333 0.611 0.055 0.694 <0.001* 0.833   0.595 0.537 0.034* 0.693 
NHR 0.087 0.023* 0.606 0.056 0.691 0.772 0.526       
DFA 0.678 0.499 0.526           

 Post-operative UVFP vs. healthy 
Shimmer(dB) <0.001* <0.001* 0.953 <0.001* 0.762         
Jitter(ABS) <0.001* <0.001* 0.927 <0.001* 0.760         
NHR <0.001* <0.001* 0.900           
RPDE <0.001* <0.001* 0.824           

DFA <0.001* <0.001* 0.780           
Dimension <0.001* <0.001* 0.711           
 Pre-operative UVFP vs. healthy 
Shimmer(dB) <0.001* <0.001* 0.979     <0.001* 0.868     

Jitter(ABS) <0.001* <0.001* 0.946     0.003* 0.750     
NHR <0.001* <0.001* 0.919           
RPDE <0.001* <0.001* 0.866           
Dimension <0.001* <0.001* 0.840     <0.001* 0.740     
DFA <0.001* <0.001* 0.787           
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